HAZARDOUS BUILDING MATERIALS INSPECTION REPORT

OFFUTT AFB PROJECT: SGBP 20 -0041 Repair HVAC B 324 Offutt Air Force Base

September 4, 2020

Prepared for:

Schemmer & Associates Omaha, NE

Prepared by:

AMI Environmental 8802 South 135th Street, Suite 400 Omaha, Nebraska 68138 AMIE # 20-205

TABLE OF CONTENTS

1.	SU	RVE	Y OVERVIEW1	Ĺ
1	.1.	Pur	rpose and Scope	l
	1.1.	.1.	Inspection Area	l
	1.1.	.2.	Limitations	l
1	.2.	Reg	gulatory Reference2	2
2.	Bu	ILD	ING INFORMATION2	2
2	2.1.	Ger	neral Construction2	2
2	2.2.	Pre	-Existing Information2	2
3.	INS	SPEC	CTION METHODOLOGIES2	2
3	3.1.	Asb	pestos Inspection	2
	3.1.	.1.	Key Definitions	2
	3.1.	.2.	Homogenous Material Numbering Convention	3
	3.1.	.3.	Bulk Sampling.	3
3	3.2.	Lea	nd-Based Paint Inspection4	1
	3.2.	.1.	Key Definitions	5
	3.2.	.2.	Homogenous Paint Applications Numbering Convention	5
	3.2.	.3.	Paint Chip Sampling	5
4.	SU	MM	ARY OF INSPECTION FINDINGS5	,
4	l.1.	Ash	pestos Inspection Findings5	5
4	1.2.	Lea	nd-Based Paint Inspection Findings5	5
5.	Ris	SKS.	AND HAZARDS6	ó
5	5.1.	Asb	pestos	5
5	5.2.		nd-Based Paint6	
6.	RE	CON	MMENDATIONS6	5
6	5.1.	Ger	neral Recommendations	5
	6.1.	.1.	Asbestos	5
	6.1.	.2.	Lead-Based Paint	7

	6.2.	Hazardous Conditions Recommendations	7
	6.3.	Point Count Analysis / TEM Chatfield Analysis Recommendations	7
7.	RE	GULATORY REQUIREMENTS	7
	7.1.	Asbestos-Containing Materials	7
	7.1.	. Notification Requirements	7
	7.1.2	Asbestos Removal Requirements	7
	7.1.3	OSHA Regulation of <1 Percent Asbestos	8
	7.1.4	State of Nebraska Asbestos Removal Regulations	8
	7.2.	Lead-Based Paint	8
	7.2.	. Disposal Requirements	8
	7.2.2	. Construction Requirements	8

APPENDIX A: Tables

APPENDIX B: Photo Logs

APPENDIX C: Analytical Results

APPENDIX D: Schematics

APPENDIX E: Inspectors' Credentials

HAZARDOUS MATERIALS INSPECTION REPORT

OFFUTT AFB PROJECT: SGBP 20 -0041 Repair HVAC B 324 Offutt Air Force Base Bellevue, Nebraska

September 4, 2020

1. Survey Overview

On August 3, 2020 Building 324, located on Offutt AFB, Bellevue, Nebraska, was inspected for asbestos-containing material (ACM) and lead-based paint (LBP) by a representative of AMI Environmental (AMIE). The inspection was conducted in preparation for renovation and/or repair of the building. The renovation and/or repair project is hereinafter referred to as "The Project". The inspection was initiated at the request of Mr. Terry Wood, AIA, LEED, AP of Schemmer Associates.

The inspection was performed by Mr. William Crowe of AMIE in accordance with regulatory requirements, and generally accepted industry methods. Copies of applicable requisite training certificates for Mr. Crowe are provided in Appendix E.

1.1. Purpose and Scope

The purpose and scope of the inspection was to sample suspect ACMs and LBPs present in defined project area that may be impacted by The Project.

1.1.1. Inspection Area

The hazardous building materials inspection included all accessible interior areas and exterior of the solarium walkway of Building 324. The defined area for The Project is hereinafter referred to as the Inspection Area.

1.1.2. Limitations

At the discretion of the inspector(s), certain spaces may not have been inspected and/or samples not collected from materials that were not accessible at the time of the inspection. Examples of suspect materials that may not have been accessible include those which may exist inside finished interior walls and ceilings, and/or materials in areas not accessible due to locked doors, physical barriers, and/or safety, security, and related concerns. Materials requiring specialized equipment to access (e.g. lifts) are also considered not accessible unless prior arrangements were made. These materials, if present, should be identified at the time of renovation or demolition. Sampling of these materials may not be necessary if, in the case of suspect ACM, the materials are assumed to be ACM or if they are determined by a licensed asbestos inspector to be homogenous to other materials that were sampled.

1.2. Regulatory Reference

The asbestos inspection was conducted in accordance with USEPA National Emission Standard for Hazardous Air Pollutants (NESHAP) regulations (ref.: 40 CFR, Part 61), following criteria established for identifying asbestos-containing building materials that may be impacted by planned repair and renovation activities; applicable protocols established by the Asbestos Hazard Emergency Response Act (AHERA) (ref.: 40 CFR 763), and the State of Nebraska Department of Health and Human Services. There is also no licensing requirement for lead paint sampling in non-HUD facilities.

2. BUILDING INFORMATION

2.1. General Construction

The area was reported to have been added to the existing dining hall.

2.2. Pre-Existing Information

No previous hazardous materials inspection and/or sampling information was available at the time of the inspection.

3. Inspection Methodologies

3.1. Asbestos Inspection

The asbestos inspection included visual identification and bulk sampling of suspect materials. The inspection and sampling were conducted in accordance with the USEPA National Emission Standard for Hazardous Air Pollutants (NESHAP) regulations (ref.: 40 CFR, Part 61), following criteria established for identifying asbestos-containing building materials that may be impacted by planned renovation. Additional aspects of the inspection methodology are discussed below.

3.1.1. Key Definitions

3.1.1.1. Homogenous Material

Homogenous materials are unique applications of building materials uniform in color and texture. The homogeneity of a material can be further defined by area(s) of application. Bulk sampling is conducted to determine the asbestos content of a homogenous material.

3.1.1.2. Asbestos-Containing Material (ACM)

The Environmental Protection Agency (EPA) and the Occupational Safety and Health Administration (OSHA) define ACMs as any material that contains greater than one percent asbestos, as determined by visual area estimation (microscopic analysis). The State of Kansas follows the EPA standard. Some materials contain one percent or less asbestos. While these materials are not ACMs by definition, they are still regulated by OSHA, but to a lesser degree.

3.1.1.3. Friable/Non-Friable ACM

Friable ACMs are materials that contain more than one percent asbestos and, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure, thereby releasing fibers into the air more readily. In contrast, non-friable ACMs are ACMs

that, when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. Non-friable ACMs are grouped into two categories: Category I and Category II.

3.1.1.4. Regulated Asbestos-Containing Materials (RACM)

Regulated Asbestos-Containing Materials (RACM) include friable ACMs and nonfriable ACMs that, depending on their category, have become friable, have been subjected to specific forms of impact damage, have a high probability of becoming friable, and/or may become friable during removal.

3.1.2. Homogenous Material Numbering Convention

All suspect asbestos materials are assigned a unique homogeneous material number (HM#). The HM# begins with two or three letters, denoting the type of material, followed by a sequential number that is assigned to every material identified within each material type (example: ABC-01). The HM# is referenced throughout the report to uniquely identify each material. AHERA identifies three basic material types: Surfacing Materials (SM), which include spray and trowel applied materials, such as fireproofing, ceiling texture, plaster, etc.; Thermal System Insulation (TSI), which includes insulating materials applied to mechanical and plumbing components for temperature preservation and condensation prevention purposes; and Miscellaneous Materials (MM), which includes all other materials, such as floor coverings and mastics, roofing materials, asbestos cement products, and many others. When a homogenous material has multiple layers, individual layers are identified with a suffix, e.g. MM-03A, MM-03B, etc. A key defining acronyms is provided on the table(s).

3.1.3. Bulk Sampling

Bulk sampling must be performed to determine whether a certain homogenous material contains asbestos. Asbestos bulk sampling for the inspection was conducted in accordance with protocols established by the Asbestos Hazard Emergency Response Act (AHERA) (ref.: 40 CFR 763). All suspect homogenous materials and associated sampling of these materials are identified in *Table 1 – Asbestos Material Sampling Table*. Suspect materials not sampled are assumed to be ACM until properly sampled and determined otherwise. Some suspect materials, such as lab table tops, roofing systems, TSI, etc., may not be sampled to preclude damage. Friability of the suspect asbestos-containing materials was determined by touching and/or sampling of the material.

3.1.3.1. Bulk Sample Numbering Convention

Bulk samples are given a sequence number when collected. When sampling information from multiple surveys are incorporated into the same report, which may result in duplicate sample numbers, the sample numbers in the *Asbestos Material Sampling Table* differentiate prior sampling events by including the year in which the previous sample was collected as a prefix to the sample number. For example, a sample number of 1993-46A denotes sample no. 46A from a 1993 survey. This report contains no sampling information from previous surveys.

3.1.3.2. Polarized Light Microscopy Analysis (PLM)

Bulk samples collected during the inspection were submitted to an EPA accredited laboratory, EMSL Analytical, Inc. (EMSL), located at 200 Route 130 North, Cinnaminson, New Jersey. EMSL was instructed to perform Polarized Light

Microscopy (PLM) analysis, utilizing dispersion staining techniques (ref: EPA Method 600/M4-82-020). PLM analysis is the least expensive and most commonly used visual estimate method. While PLM analysis is acceptable to EPA, OSHA, and most states for determining asbestos content, some states now require more sophisticated methods when analyzing certain types of materials.

A total of nineteen (19) asbestos bulk samples were collected and submitted for laboratory analysis from homogenous materials identified during the asbestos inspection. PLM analysis was performed on a total of twenty-one (21) heterogeneous applications identified in the homogenous materials. Heterogeneous applications are individual layers of different materials contained within a single bulk sample, each of which must be analyzed individually to determine its asbestos content (e.g. vinyl floor tiles and mastic; cove base and mastic; etc.).

Some samples and/or heterogeneous applications may not have been analyzed by the lab if a positive result was obtained from a sample that is among a group of samples representing a suspect material. This process, known as "stop on first positive," is followed because if a single sample is found to be positive, that material is determined to be ACM, thus making it unnecessary to analyze any additional samples in the sampling group.

Please refer to the $Table\ I-Asbestos\ Material\ Sampling\ Table$ in Appendix A for a complete listing of all materials sampled. The laboratory analytical reports may be found in Appendix C.

3.1.3.3. Quantification Method Analysis

EPA regulations allow materials determined to contain less than 10 percent asbestos utilizing a visual estimate quantification method, such as PLM analysis, to be treated as non-asbestos containing if the material is re-analyzed using one of two quantification methods and determined to contain one percent or less of asbestos. The two acceptable quantification methods are point count analysis and TEM Chatfield analysis.

Quantification methods are more time-consuming and more expensive analytical procedures that are occasionally used to more accurately determine the amount of asbestos in certain samples. Because of their higher cost and the acceptable accuracy of the less expensive visual estimation method, laboratories do not typically perform quantification analyses unless specifically requested.

The quantification method known as point count analysis is used for most ACM types, except floor tile. The organic matrix composition of floor tile precludes the use of point count analysis to more accurately determine asbestos amounts within a sample. Therefore, TEM Chatfield analysis—which effectively removes all organic materials, leaving only asbestos behind—is necessary to provide a more precise percentage of asbestos content in floor tile.

Please refer to section 6.0 Recommendations, for recommendations concerning supplemental analysis.

3.2. Lead-Based Paint Inspection

The LBP inspection included visual identification of homogenous paint applications and bulk (chip) sampling of the paint(s). While the U. S. Department of Housing and Urban Development (HUD) promulgates guidelines for LBP inspections in child occupied facilities, there are no formal guidelines

for non-HUD regulated inspections. Thus, the LBP inspection was conducted in accordance with generally accepted industry standards and practices. Additional aspects of the inspection methodology are discussed below.

3.2.1. Key Definitions

3.2.1.1. Homogenous Paint Applications

Homogenous paint applications are significant paint applications that are visually distinct by their color and uniformity. Significant paint applications do not include incidental occurrences of paint such as isolated occurrences of accent trim, artistic paints, etc. While visual inspection alone cannot generally identify sub-layers of paint, these applications are often identified during the chip sampling process.

3.2.1.2. Lead-Based Paint (LBP)

Pursuant to Federal Register, Vol. 61, No. 169, LBP is defined as paint or other surface coatings containing more than 0.5 percent lead by weight.

3.2.2. Homogenous Paint Applications Numbering Convention

Homogenous paints and coatings are assigned a unique homogeneous material number (HM#). For paints, the HM# begins with "LP", followed by a sequential number that is assigned to every paint identified (e.g. LP-01). The HM# is referenced throughout the report to uniquely identify each paint application.

3.2.3. Lead-based Paint and Lead-containing Material Sampling

A total of five (5) homogeneous painted materials were collected from significant and visually distinct paint applications identified during the lead paint inspection. Additionally, one (1) ceramic tile flooring was sampled as suspect lead-containing material. The samples were submitted to EMSL for laboratory analysis, utilizing Flame Atomic Absorption Spectrophotometry (SW 846 3050B/7000B). EMSL's NLLAP (National Lead Laboratory Accreditation Program) and AIHA ELLAP (Environmental Lead Laboratory Accreditation Program) accreditation number is 100194.

Please refer to *Table 2 – Lead Paint Sampling Table* in Appendix A for a complete listing of the paint applications identified and sampled for lead. The laboratory's analytical reports are provided in Appendix C.

4. SUMMARY OF INSPECTION FINDINGS

Key findings of the hazardous building materials inspection are summarized below. Please refer to the Appendices for complete details of the inspection findings and supporting documentation.

4.1. Asbestos Inspection Findings

•	Black Exterior Caulk	3% Chrysotile	5000 LF
•	Gray Exterior Vertical Seam Caulk	5% Chrysotile	500 LF
	Fire Doors	Assumed ACM	8 EA

4.2. Lead-Based Paint Inspection Findings

- No lead-based paint was identified in the Project Area.
- Ceramic Tile was not lead-containing.

 Paint applications were determined to contain detectable levels of lead. See Section 7.2 for more information on Lead in Construction.

See Appendix D, Schematics, for locations of Asbestos Containing Materials.

5. RISKS AND HAZARDS

5.1. Asbestos

To be a significant health concern, asbestos fibers must be inhaled. When asbestos fibers are inhaled, they become lodged in the lung tissue or alveoli. Here they clog and scar the tissues, causing the walls of the alveoli to lose their elasticity and useful function in respiration. Asbestosis (scarring of the lung), lung cancer, and Mesothelioma (cancer of the lining of the chest or lining of the abdominal wall) are diseases associated with asbestos exposure. Risks and hazards increase with increased exposure. ACM condition, proximity to building occupants, building use, and other factors can influence the potential for asbestos fibers to become airborne, and therefore increase exposure risks.

5.2. Lead-Based Paint

Inhalation and ingestion are the major routes of lead exposure. Once in the body, lead is distributed via the bloodstream to red blood cells, soft-tissue and bone. The kidneys and gastrointestinal (GI) tract eliminate lead in the body very slowly, while minute amounts are lost through perspiration.

Lead in the body can cause serious damage to the central and peripheral nervous system, the cardiovascular system, and the kidneys. Exposure to high concentrations of lead can cause retardation, convulsions, coma, and sometimes death. Children are especially vulnerable and susceptible to lead poisoning. Even low levels of exposure persisting during childhood are known to slow a child's normal development and cause learning and behavioral problems. Exposure to lead can result from deteriorating surfaces and activities mechanically impacting lead surfaces. Preventing exposure requires proper work practices, monitoring, disposal and personal protective equipment during demolition, alteration and friction producing activities.

6. RECOMMENDATIONS

The purpose of this section is to interpret survey findings and provide preliminary recommendations that may be relevant and appropriate at this time. Because this document is a presentation of investigative findings, recommendations related to future construction activities are inherently general in nature. More specific determinations concerning hazardous building materials to be impacted by construction should be made during the abatement project design process.

6.1. General Recommendations

6.1.1. Asbestos

State and/or federal regulations require that ACMs be removed prior to demolition or renovation activities that will impact the ACMs. Depending on the specific renovation work to be performed, certain ACMs, such as the lab sink and countertop, may not require removal if they will not be disturbed and do not pose a risk to building occupants or construction trade workers. However, to ensure worker safety and to eliminate future asbestos-related maintenance and management costs and risks, AMIE recommends removal of all identified ACMs in the areas to be renovated.

6.1.2. Lead-Based Paint

Facility owners are ultimately liable for their lead-containing hazardous waste from cradle to grave. EPA regulations provide two ways to determine whether a waste stream, such as demolition debris containing LBP, must be classified as hazardous waste. Waste generators can either test the waste using an approved testing method (Toxicity Characteristic Leaching Procedure [TCLP]), or they can apply knowledge of the hazardous characteristic of the waste.

AMIE recommends TCLP testing be conducted on the existing building materials, painted and unpainted, prior to the start of renovation or demolition activity to document that the waste stream is acceptable for disposal of as non-hazardous waste. In addition, trade contractors who work in the facility should be notified of the presence of paints containing lead so that they can appropriately monitor and protect their workers against lead exposure.

6.2. Hazardous Conditions Recommendations

Potentially hazardous conditions were observed in the building and are described below. The conditions described are not intended to be a complete assessment of potential hazards. Additional hazards may be present.

No immediately hazardous conditions were observed.

6.3. Point Count Analysis / TEM Chatfield Analysis Recommendations

No additional laboratory analysis is recommended.

7. REGULATORY REQUIREMENTS

7.1. Asbestos-Containing Materials

The removal and disposal of ACMs is regulated at the federal, state, and, sometimes, local level. While some states have developed their own regulatory standards for the various asbestos disciplines, many states have adopted the federal standards but have established licensing requirements and enforcement authority at the state level.

7.1.1. Notification Requirements

EPA's NESHAP regulation, 40 CFR, Subpart M, 61.145, Standard for Demolition and Renovation, stipulates that an owner of a facility submit proper notification with either the EPA's regional office and/or the state and local regulatory agency of intention to demolish or renovate. Notifications must be received by the appropriate regulatory agencies 10 working days prior to commencement of asbestos stripping or removal, or other site work. If the demolition or renovation date changes, or the scope of work is increased by more than 20 percent, another notification must be made.

7.1.2. Asbestos Removal Requirements

Asbestos removal must be performed by a licensed abatement contractor. The contractor should follow all work practices, worker protection, and disposal requirements set forth in the contract specifications and by the Occupational Safety and Health Administration (OSHA) and the EPA. Key federal regulations concerning asbestos include 29 CFR 1910.1001, 29 CFR 1926.1101, 40 CFR Part 61, Subpart M, and 40 CFR 763.

7.1.3. OSHA Regulation of <1 Percent Asbestos

While EPA and many states do not regulate materials containing less than one percent asbestos, OSHA regulates materials containing any amount of asbestos. (Ref. OSHA Construction Industry Standard, 29 CFR 1926.1101(a)(3))

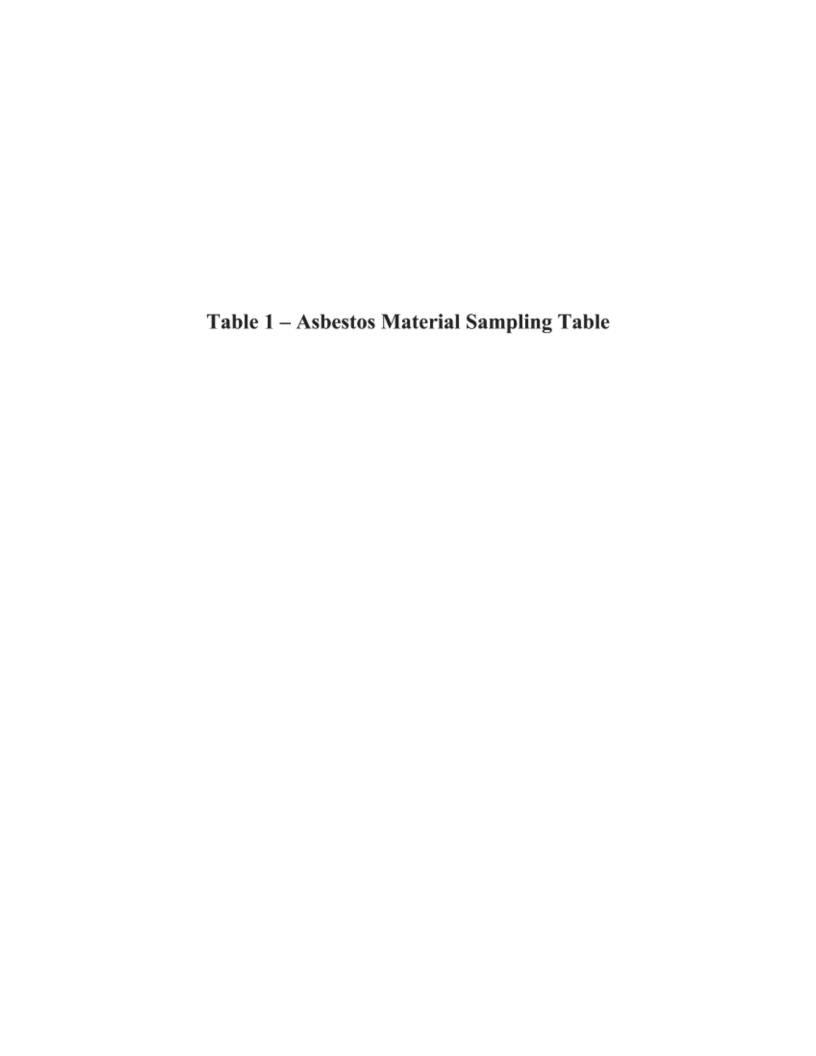
7.1.4. State of Nebraska Asbestos Removal Regulations

State of Nebraska regulates the removal of friable asbestos-containing materials and non-friable asbestos containing materials that may become friable during removal, when affected quantities are greater than three square or three linear feet. For a complete understanding of the Nebraska governing asbestos projects, refer to Title 178, Chapter 22.

7.2. Lead-Based Paint

7.2.1. Disposal Requirements

The Resource Conservation and Recovery Act (RCRA) classifies lead-containing waste streams as hazardous materials if TCLP levels exceed five parts per million. If TCLP leachable lead levels exceed that threshold, EPA regulations (40 CFR 261) require the waste stream to be handled and disposed of as a hazardous waste. Waste streams containing less the five parts per million of leachable lead are classified as non-hazardous waste and can be disposed of in a construction and demolition landfill.


7.2.2. Construction Requirements

OSHA's 29 CFR 1926.62 regulates worker exposure to lead during construction activities that include demolition or salvage of structures where lead or materials containing lead are present, as well as removal or encapsulation of lead-containing materials. The standard establishes maximum limits of exposure to lead, including a permissible exposure limit and action level, and should be adhered to during construction and demolition activities.

APPENDIX A

Table 1 – Asbestos Sampling

Table 2 – Lead-based Paint Sampling

Table 1. Asbestos Material Sampling Results Asbestos Containing Materials (ACM) = >1% Asbestos

Comments																						
Estimated Quantity														3000 LF	Included in above	100 LF	Included in above					8 EA
Asbestos Content	None Detected	None Detected	None Detected	None Detected	None Detected	None Detected	3% Chrysotile	3% Chrysotile	5% Chrysotile	5% Chrysotile	None Detected	None Detected	None Detected	None Detected	Assumed ACM							
Material Location	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium	B 324 Dining Hall Atrium							
Color	White	Black	Black	Black	Black	Black	Black	Black	Black	Gray	Gray	Gray	Gray	Black	Black	Brown						
Description	2' x 2' Ceiling Tile	2' x 2' Ceiling Tile	2' x 2' Ceiling Tile	Drywall	Joint Compound	Drywall	Joint Compound	Interior of External Window Caulk	Interior External Window Caulk	Interior Exterior Window Caulk	Interior External Window Caulk	Atrium side of Dining Window Caulk	Atrium side of Dining Window Caulk	Exterior Window Caulk	Exterior Window Caulk	External Vertical Seam Caulk	External Vertical Seam Caulk	Exterior Base Caulk	Exterior Base Caulk	Exterior Base Caulk	Exterior Base Caulk	Fire Doors
Photo No.	1	1	1	2	2	2	2	3	3	4	4	S	5	9	9	7	7	8	8	6	6	10
Sample No.	1	2	3	4	4A	5	5A	9	7	8	6	10	11	12	13	14	15	16	17	18	19	
Homogeneous Area	1	1	1	2	3	2	3	4	4	5	5	9	9	7	7	8	8	6	6	10	10	11

Table 2 - Lead Sampling Table

Table 2. Lead-Based Paint/Lead Material Sampling Results

Lead-Based Paint = $\geq 0.5\%$ Lead (by weight)

Brown <0.0080
Brown <0.0080
Brown Brown Tan
Brown Tan
Brown Tan
Brown <0.0048 Tan <0.0040
Brown <0.0048 Tan <0.0040
Tan <0.0040
Tan <0.0040

APPENDIX B Photo Logs

Asbestos Photo Log Lead-Based Paint Photo Log

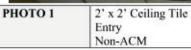


PHOTO 2 Drywall Joint Compound Atrium Non-ACM

PHOTO 3 Black Caulk Atrium Non-ACM

PHOTO 4 Black Caulk Atrium Non-ACM

PHOTO 5 Black Caulk Interior Windows Atrium Non-ACM

PHOTO 6 Black Caulk Exterior Windows 3% Chrysotile

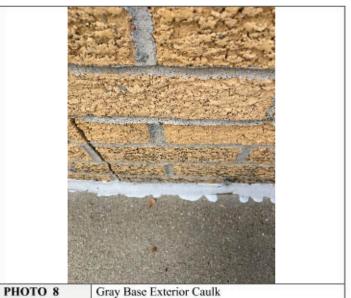


PHOTO 8 Gray Base Exterior Caulk Non-ACM

PHOTO 9 Black Exterior Base Caulk Non-ACM

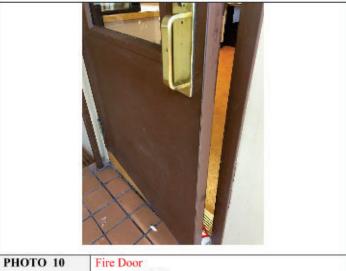
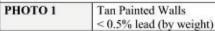
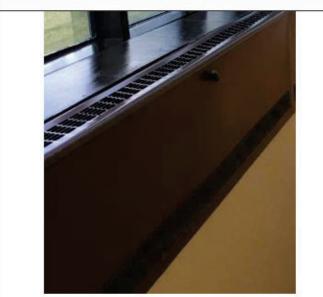



PHOTO 10 Fire Door Assumed ACM



< 0.5% lead (by weight)

Brown Painted HVAC Units < 0.5% lead (by weight)

РНОТО 4

РНОТО 5 Brown Painted Door < 0.5% lead (by weight)

Tan Ceramic Tile Floor < 0.5% lead (by weight)

APPENDIX C Laboratory Results

AMI Group, Inc.

Suite 100

8802 South 135th Street

Omaha, NE 68138-6511

Attention: Bill Crowe

EMSL Order: 042018819 Customer ID: AMI50 Customer PO: 20-205

Project ID:

Phone: (402) 981-1006

Fax: (402) 397-3313

Received Date: 08/05/2020 10:00 AM

Analysis Date: 08/07/2020

Collected Date: 08/03/2020

Project: 20-205 / Dining Hall B324 Offutt AFB

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbes	stos	<u>Asbestos</u>		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type		
BC1	Ceiling Tile 2'x2'	White Fibrous	60% Min. Wool	40% Non-fibrous (Other)	None Detected		
042018819-0001		Homogeneous					
BC2	Ceiling Tile 2'x2'	White Fibrous	60% Min. Wool	40% Non-fibrous (Other)	None Detected		
042018819-0002		Homogeneous	at his paper larger over secure 4 years				
BC3 042018819-0003	Ceiling Tile 2'x2'	White Fibrous Homogeneous	60% Min. Wool	40% Non-fibrous (Other)	None Detected		
BC4-Drywall	Drywall	Brown/White	15% Cellulose	80% Non-fibrous (Other)	None Detected		
042018819-0004	Drywan	Fibrous Homogeneous	5% Glass	60 % Non-Horous (Other)	None Detected		
Z v	Joint Compound	White		100% Non-fibrous (Other)	None Detected		
BC4-Joint Compound	June Compound	Non-Fibrous Homogeneous		100% Nor-Horous (Other)	Notic Detected		
BC5-Drywall	Drywall	Brown/White	15% Cellulose	80% Non-fibrous (Other)	None Detected		
042018819-0005	Diyiran	Fibrous Homogeneous	5% Glass	ou in manniona (onier)	Hone Detected		
BC5-Joint Compound	Joint Compound	White		100% Non-fibrous (Other)	None Detected		
042018819-0005A	John Compound	Non-Fibrous Homogeneous		100 M Holl-Holdes (Other)	Hone Detected		
BC6	Black Caulk	Black		100% Non-fibrous (Other)	None Detected		
042018819-0006	Diddi Oddin	Non-Fibrous Homogeneous		1007/1101110000 (00101)	TOTO DOTOTO		
BC7	Black Caulk	Black		100% Non-fibrous (Other)	None Detected		
042018819-0007	Didde Oddin	Non-Fibrous Homogeneous		100 % 11011-1101000 (01101)	110110 000000		
BC8	Black Caulk	Black		100% Non-fibrous (Other)	None Detected		
ВСО	DIBON COUR	Non-Fibrous		100 % Noti-ficious (Outer)	None Detected		
042018819-0008		Homogeneous					
BC9	Black Caulk	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected		
042018819-0009		Homogeneous					
BC10	Interior - Black	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected		
042018819-0010		Homogeneous					
BC11	Interior - Black	Black Non-Fibrous		100% Non-fibrous (Other)	None Detected		
042018819-0011		Homogeneous					
BC12	Black Exterior	Black Non-Fibrous		97% Non-fibrous (Other)	3% Chrysotile		
042018819-0012		Homogeneous					
BC13	Black Exterior	Black Non-Fibrous		97% Non-fibrous (Other)	3% Chrysotile		
042018819-0013		Homogeneous					
BC14	Gray Caulk - Exterior	Gray Non-Fibrous		95% Non-fibrous (Other)	5% Chrysotile		
042018819-0014		Homogeneous					

Initial report from: 08/08/2020 00:11:29

EMSL Order: 042018819

Customer ID: AMI50

Customer PO: 20-205

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Asbestos		
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
BC15	Gray Caulk - Exterior	Gray Non-Fibrous		95% Non-fibrous (Other)	5% Chrysotile
042018819-0015		Homogeneous			
BC16	Gray Caulk - Base	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
042018819-0016		Homogeneous			
BC17	Gray Caulk - Base	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
042018819-0017		Homogeneous			
BC18	Black Base Cove	Black Fibrous	60% Cellulose	40% Non-fibrous (Other)	None Detected
042018819-0018		Homogeneous			
BC19	Black Base Cove	Black	60% Cellulose	40% Non-fibrous (Other)	None Detected
042018819-0019		Fibrous Homogeneous			

Analyst(s)

Keishla Vazquez Caraballo (11) Nancy Stalter (10) Samantha Rundstrom, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NVLAP Lab Code 101048-0, AIHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036, PA ID# 68-00367, LA #04127

Initial report from: 08/08/2020 00:11:29

EMSL Analytical, Inc.

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com EMSL Order: 202006971 CustomerID: AMI50 CustomerPO: 20-205 ProjectID:

Attn: Bill Crowe AMI Group, Inc. 8802 South 135th Street Suite 100 Omaha, NE 68138-6511

Phone: (402) 397-5001 (402) 397-3313 Fax: 08/05/20 11:00 AM Received:

Collected: 8/3/2020

Project: 20-205 / B324 Offutt AFB

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client SampleDescription	Collected	Analyzed	Weight	RDL	Lead Concentration
L2	8/3/2020	8/6/2020	0.2535 g	0.0080 % wt	<0.0080 % wt
202006971-0002	Site: Tan Pa	ainted Wall (On Drywall)			
L3	8/3/2020	8/6/2020	0.2998 g	0.0080 % wt	<0.0080 % wt
202006971-0003	Site: Brown	Painted Benches (Wood)			
L4	8/3/2020	8/6/2020	0.2764 g	0.0080 % wt	<0.0080 % wt
202006971-0004	Site: Brown	Shelved (Wood)			
L5	8/3/2020	8/6/2020	0.0403 g	0.050 % wt	0.32 % wt
202006971-0005	Site: Brown	HVAC (Metal)	800 to 600 000 000	200000000000000000000000000000000000000	
L7	8/3/2020	8/6/2020	0.0419 g	0.048 % wt	<0.048 % wt
202006971-0007	Site: Brown	Doors			

Phillip Worby, Lead Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.

Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.008% wt based on the minimum sample weight per our SOP. "<" (less than) result signifies the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. Definitions of modifications are available upon request.

Samples analyzed by EMSL. Analytical, Inc. Cinnaminson, NJ NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, AJHA-LAP, LLC ELLAP 100194, A2LA 2845.01

EMSL Analytical, Inc.

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com

EMSL Order: 202006971 CustomerID: AMI50 CustomerPO: 20-205

ProjectID:

Attn: Bill Crowe AMI Group, Inc. 8802 South 135th Street Suite 100 Omaha, NE 68138-6511

Phone: (402) 397-5001 (402) 397-3313 Fax: 08/05/20 11:00 AM Received:

Collected: 8/3/2020

Project: 20-205 / B324 Offutt AFB

Test Report: Lead by Flame AAS (SW 846 3050B/7000B)*

Client SampleDescription	Collected	Analyzed	Weight (g)	RDL	Lead Concentration
L1	8/3/2020	8/6/2020	0.5206 g	40 mg/Kg	<40 mg/Kg
202006971-0001	Site: Brown	n Ceramic Tile			

Phillip Worby, Lead Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ Method SW 846 7000B replaces EPA 7420 for lead analysis and is an equivalent method. NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, CA 1877, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

Initial report from 08/08/2020 15:05:57

EMSL Analytical, Inc.

200 Route 130 North, Cinnaminson, NJ 08077 Phone/Fax: (856) 303-2500 / (856) 786-5974

http://www.EMSL.com cinnaminsonleadlab@emsl.com

Phone:

Fax:

(402) 397-5001 (402) 397-3313 EMSL Order:

CustomerID:

CustomerPO:

ProjectID:

202006971

AMI50

20-205

08/05/20 11:00 AM Received:

Collected: 8/3/2020

Attn: Bill Crowe AMI Group, Inc. 8802 South 135th Street Suite 100 Omaha, NE 68138-6511

Project: 20-205 / B324 Offutt AFB

Test Report: Lead by Flame AAS (SW 846 3050B/7000B)*

Client SampleDescription	Collected	Analyzed	Weight	RDL	Lead Concentration
L1	8/3/2020	8/6/2020	0.5206 g	0.0040 % wt	<0.0040 % wt
202006971-0001	Site: Brown	n Ceramic Tile			

Phillip Worby, Lead Laboratory Manager or other approved signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ Method SW 846 7000B replaces EPA 7420 for lead analysis and is an equivalent method. NELAP Certifications: NJ 03036, NY 10872, PA 68-00367, CA 1877, AIHA-LAP, LLC ELLAP 100194, A2LA 2845.01

Report Amended: 08/19/2020 11:28:05 Replaces the Inital Report 08/08/2020 15:06:04. Reason Code: Results Changed to % weight

APPENDIX D

Schematics

Offutt Air Force Base

 \diamond

SUMMARY OF ASSESTOR CONTAINING MATERIALS

FRABLE EST. OTY.

DESCRIPTION

ENON 900

ě ž

GRAY CALLK ON YERTON, SEARS (ATBROR)

ASBESTOS CONTAINING MATERIAL LOCATIONS HA101

REPAIR HVAC B324

SOBP 23-0341

Off-B-6449 B324

35% DESIGN SUBMITTAL

SHEETS NOTE:

O DOCKSED DUBO PRO PRO AND PROPERTY WHEN WAS A BANK DO DOCK ON DISCOUNT OF DESCRIPTION OF DESCRI

COCHOMATION

THEOREM THE COLIC SHALL CONSTITUTE OF THE PERSON OF T

1 FIRST FLOOR PLAN

\rightarrow

\$

APPENDIX E

Inspector Credentials